Abstract
Many are the sources of variability that can affect reproducibility of disease biomarkers from time-of-flight (TOF) Mass Spectrometry (MS) data. Here we present TOFwave, a complete software pipeline for TOF-MS biomarker identification, that limits the impact of parameter tuning along the whole chain of preprocessing and model selection modules. Peak profiles are obtained by a preprocessing based on Continuous Wavelet Transform (CWT), coupled with a machine learning protocol aimed at avoiding selection bias effects. Only two parameters (minimum peak width and a signal to noise cutoff) have to be explicitly set. The TOFwave pipeline is built on top of the mlpy Python package. Examples on Matrix-Assisted Laser Desorption and Ionization (MALDI) TOF datasets are presented. Software prototype, datasets and details to replicate results in this paper can be found at http://mlpy.sf.net/tofwave/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.