Abstract

Over the past couple of years, imaging mass spectrometry (IMS) has arisen as a powerful tool to answer research questions in the biomedical field. Imaging mass spectrometry allows for label-free chemical imaging by providing full molecular information. The IMS technique best positioned for cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it has the best spatial resolution of all the molecular IMS techniques and can detect many biochemical species and especially lipids with high sensitivity. Because one must rely on the mass and isotopic pattern of an ion in combination with positive correlations with lower mass fragments to help identify its structure, one major problem during ToF-SIMS experiments is the ambiguity when assigning a molecule to a certain mass peak. The solution are instruments with tandem MS capabilities as was already the case for many MALDI-ToF instruments more than a decade ago. It has been a few years since instruments with this capability were introduced and a number of interesting publications have been produced highlighting the advantages in biological SIMS work. Here, we present a protocol describing how tandem MS can be used to elucidate the structure of unknown or ambiguous mass peaks in biological tissue samples observed during ToF-SIMS imaging based on our experiences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.