Abstract
Drosophila melanogaster (fruit fly) has a relatively simple nervous system but possesses high order brain functions similar to humans. Therefore, it has been used as a common model system in biological studies, particularly drug addiction. Here, the spatial distribution of biomolecules in the brain of the fly was studied using time-of flight secondary ion mass spectrometry (ToF-SIMS). Fly brains were analyzed frozen to prevent molecular redistribution prior to analysis. Different molecules were found to distribute differently in the tissue, particularly the eye pigments, diacylglycerides, and phospholipids, and this is expected to be driven by their biological functions in the brain. Correlations in the localization of these molecules were also observed using principal components analysis of image data, and this was used to identify peaks for further analysis. Furthermore, consecutive analyses following 10 keV Ar2500+ sputtering showed that different biomolecules respond differently to Ar2500+ sputtering. Significant changes in signal intensities between consecutive analyses were observed for high mass molecules including lipids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.