Abstract

In this paper, we present five Toeplitz-type schemes for the Hadamard finite-part integral operator. These discrete schemes are of Toeplitz or nearly Toeplitz structure, which gives many advantages in developing fast linear solvers for numerical solution of intego-differential equations. Two examples are presented to confirm our theoretical analysis of approximations to the Hadamard finite-part integrals and to show the accuracy of schemes for solving integral equations with a hypersingular kernel. Finally, we apply our algorithms for electromagnetic scattering from cavities. Numerical results show that these algorithms are efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.