Abstract
Let X be a Banach function space over the unit circle T and let H[X] be the abstract Hardy space built upon X. If the Riesz projection P is bounded on X and a∈L∞, then the Toeplitz operator Taf=P(af) is bounded on H[X]. We extend well-known results by Brown and Halmos for X=L2 and show that, under certain assumptions on the space X, the Toeplitz operator Ta is bounded (resp., compact) if and only if a∈L∞ (resp., a=0). Moreover, aL∞≤TaB(H[X])≤PB(X)aL∞. These results are specified to the cases of abstract Hardy spaces built upon Lebesgue spaces with Muckenhoupt weights and Nakano spaces with radial oscillating weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.