Abstract
We discuss new results concerning unbounded Toeplitz operators defined in Segal-Bargmann spaces of (vector-valued) functions, i.e. the space of all entire functions which are square summable with respect to the Gaussian measure in $\mathrm{C}^n$. The problem of finding adjoints of analytic Toeplitz operators is solved in some cases. Closedness of the range of analytic Toeplitz operators is studied. We indicate an example of an entire function inducing a Toeplitz operator, for which the space of polynomials is not a core though it is contained in its domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.