Abstract

Ellipticity of (pseudo-)differential operators A on a compact manifold X with boundary (or with edge) Y is connected with boundary (or edge) conditions of trace and potential type, formulated in terms of global projections on Y together with an additional symbolic structure. This gives rise to operator block matrices A with A in the upper left corner. We study an algebra of such operators, where ellipticity is equivalent to the Fredholm property in suitable scales of spaces: Sobolev spaces on X plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-differential projections. Moreover, we express parametrices of elliptic elements within our algebra and discuss spectral boundary value problems for differential operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.