Abstract

In this paper, we consider robust system identification under sparse outliers and random noises. In our problem, system parameters are observed through a Toeplitz matrix. All observations are subject to random noises and a few are corrupted with outliers. We reduce this problem of system identification to a sparse error correcting problem using a Toeplitz structured real-numbered codingmatrix. We prove the performance guarantee of Toeplitz structured matrix in sparse error correction. Thresholds on the percentage of correctable errors for Toeplitz structured matrices are also established. When both outliers and observation noise are present, we have shown that the estimation error goes to 0 asymptotically as long as the probability density function for observation noise is not “vanishing” around 0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.