Abstract
Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables the recovery of high-dimensional sparse signals from relatively few linear observations in the form of projections onto a collection of test vectors. Existing results show that if the entries of the test vectors are independent realizations of certain zero-mean random variables, then with high probability the unknown signals can be recovered by solving a tractable convex optimization. This work extends CS theory to settings where the entries of the test vectors exhibit structured statistical dependencies. It follows that CS can be effectively utilized in linear, time-invariant system identification problems provided the impulse response of the system is (approximately or exactly) sparse. An immediate application is in wireless multipath channel estimation. It is shown here that time-domain probing of a multipath channel with a random binary sequence, along with utilization of CS reconstruction techniques, can provide significant improvements in estimation accuracy compared to traditional least-squares based linear channel estimation strategies. Abstract extensions of the main results are also discussed, where the theory of equitable graph coloring is employed to establish the utility of CS in settings where the test vectors exhibit more general statistical dependencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.