Abstract
Production of small discrete DNA nanostructures containing covalent junctions requires reliable methods for the synthesis and assembly of branched oligodeoxynucleotide (ODN) conjugates. This study reports an approach for self-assembly of hard-to-obtain primitive discrete DNA nanostructures-"nanoethylenes", dimers formed by double-stranded oligonucleotides using V-shaped furcate blocks. We scaled up the synthesis of V-shaped oligonucleotide conjugates using pentaerythritol-based diazide and alkyne-modified oligonucleotides using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and optimized the conditions for "nanoethylene" formation. Next, we designed nanoethylene-based "nanomonomers" containing pendant adapters. They demonstrated smooth and high-yield spontaneous conversion into the smallest cyclic product, DNA tetragon aka "nano-methylcyclobutane". Formation of DNA nanostructures was confirmed using native polyacrylamide gel electrophoresis (PAGE) and atomic force microscopy (AFM) and additionally studied by molecular modeling. The proposed facile approach to discrete DNA nanostructures using precise adapter-directed association expands the toolkit for the realm of DNA origami.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.