Abstract

A toehold-aided DNA recycling amplification technology was developed based on the combination of toehold-aided DNA recycling and the hemin/G-quadruplex label. The dsDNA formed between aptamer and DNA1 was first immobilized on magnetic beads. On addition of target analyte (exemplified here for riboflavin), the aptamer-riboflavin complex is formed and DNA1 is released by the beads. After magnetic separation, the supernatant containing the released DNA1 is added to a solution containing the hairpin capture DNA on magnetic beads. DNA1 will hybridize with the hairpin capture DNA via toehold binding and branch migration. This process will open the hairpin structure, and an external toehold is formed in the newly formed dsDNA. On addition of reporter DNA containing the G-quadruplex, it will interact with the formed dsDNA via toehold binding and branch migration, resulting in the releasing of DNA1 and capturing of reporter DNA on the magnetic beads. The released DNA1 will bind to another hairpin capture DNA which can start another round of DNA1 recycling. Chemiluminescence (CL) is generated by the G-quadruplex-hemin-luminol CL reaction system. Under optimal conditions, the calibration plot is linear in the 0.1 to 700 nM riboflavin concentration range, with a 30 pM detection limit (at a signal-to-noise ratio of 3). The method was successfully applied to the quantitation of riboflavin in spiked urine samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.