Abstract

A great deal of research has investigated listeners’ ability to compensate for degraded speech signals such as noise-vocoded speech (a signal with reduced spectral structure but intact amplitude envelope information) and sine-wave analogs to speech (a signal that maintains the global dynamic spectral structure of the signal at the expense of amplitude envelope information). Nittrouer and colleagues found developmental changes in the ability to comprehend such signals, reporting that while adults perform more accurately with sine-wave analogs than with noise-vocoded speech, school-aged children show the opposite pattern [e.g., Nittrouer Lowenstein and Packer (2009)]. In a series of studies, we tested toddler’s comprehension of these degraded signals. Twenty-seven-month-old children saw two images on each trial (e.g., cat, dog), and heard a voice instructing them which image to look at (“Find the cat!”). Sentences were presented either in full speech or were degraded. Toddlers (n = 24 per condition) looked at the appropriate object equally long with vocoded speech of 24 channels (60.2%) or 8 channels (62.4%) as with full speech (62.6%), but performed barely above chance with 4 channels (53.6%) and at chance for 2 channels (49.8%). Preliminary results suggest that performance with sine-wave analogs is poorer than 8-channel vocoded speech (56.1%), but testing is ongoing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.