Abstract

According to the European Cement Association, CEMBUREAU, in 2015, the global cement production was 4.6 billion tons. Traditional cement production emits approximately 1 ton of CO2 per ton of cement, which represents almost 80% of the total CO2 emissions of concrete and approximately 6% of the world’s emissions. Among supplementary cementitious materials, the use of agro-waste ash emerges due to its reduced CO2 emissions, chloride diffusion, and materials cost, in addition to its greater compressive strength. In Colombia, the disposal of agro-wastes, such as tobacco waste, is an environmental and economic concern. In this study, ash obtained from tobacco waste (TWA) was studied as a sustainable partial replacement for cement in hydraulic concrete. The TWA was reduced to a particle size of less than 75 μm and was characterized by X-ray florescence. A central composite design was used to study the influence of the ash replacement percentage of cement and the water/binder (w/b) ratio on the compressive strength at 28 days. The results show that it is possible to replace 10% of the cement with TWA using a 0.5 w/b ratio and obtain a 51% higher compressive strength than the control mixture at 28 days. Moreover, the experimental results demonstrated an improvement of 86% in the 7-day compressive strength when TWA was used.

Highlights

  • Concrete is the most widely used material on earth, apart from water

  • The goal of the present work is to study the use of tobacco waste ash (TWA) as a promising supplementary cementitious material, and the influence of the ash replacement percentage of cement and the w/b ratio on the compressive strength at 28 days

  • The central composite design performed corroborated the negative influence of the w/b ratio on the compressive strength and the design demonstrated that it is possible to replace 10% of cement with TWA using a 0.5 w/b ratio and achieve a compressive strength 51% higher than the control mixture (100% cement) at 28 days

Read more

Summary

Introduction

Concrete is the most widely used material on earth, apart from water. The main binder of concrete is cement. Traditional cement ­CO2 emissions are very high and, in some cases, can be more than 1 ton per 1 ton of cement production. 0.55 tons of the carbon dioxide emissions from 1 ton of cement production originate from the chemical reaction (calcination) of calcium carbonate that converts limestone ­(CaCO3) to calcium oxide (CaO). This reaction occurs at 1400 °C and requires the combustion of fossil fuels, which emits an additional 0.40 tons of greenhouse gas [2]. The cement production emissions represent almost 80% of the total ­CO2 emissions of concrete, which in turn, are approximately 6–7% of the planet’s total ­CO2 emissions [3]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call