Abstract
Tobacco stress-induced1 (Tsi1) is an ethylene-responsive-element binding protein/APETALA2-type transcription factor that plays an important role in both biotic and abiotic stress signaling pathways. We show that Tsi1-interacting protein1 (Tsip1), a DnaJ-type Zn finger protein, interacts with Tsi1 in vitro and in yeast (Saccharomyces cerevisiae). The transcript level of Tsip1 in tobacco (Nicotiana tabacum) increased upon treatment with salicylic acid (SA), ethylene, gibberellic acid, NaCl, and virus challenge. Tsip1 appeared to be physically associated with the chloroplast surface but dissociated from it after SA treatment. Tsip1 colocalized and coimmunoprecipitated with Tsi1 in plant cells following SA treatment. Tsip1 expression increased Tsi1-mediated transcription and was able to functionally compensate for loss of the Tsi1 transcriptional activation domain through a direct interaction with Tsi1. Transgenic plants simultaneously coexpressing Tsi1 and Tsip1 displayed stronger pathogen resistance and salt tolerance than did transgenic plants expressing either Tsi1 or Tsip1 alone. Concurrent with this, the expression of a subset of stress-related genes was induced in a cooperative manner in Tsi1/Tsip1 transgenic plants. These results together implied that Tsi1 recruits Tsip1 to the promoters of stress-related genes to potentiate Tsi1-mediated transcriptional activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.