Abstract

Adsorption of Pb(II) ions from aqueous solution onto tobacco stems has been investigated to evaluate the effects of initial lead ion concentration, adsorbent dosage, contact time, pH and temperature on the removal of Pb(II) systematically. The optimal pH value for Pb(II) adsorption onto the tobacco stems was found to be 5.0. The removal of lead ions for concentrations 10, 30 and 50 mg L −1 using 0.8 g adsorbent at contact time of 120 min and at temperature of 299 K were 94.37%, 92.10% and 90.43%, respectively. Thermodynamic parameters such as standard Gibbs free energy (Δ G°), standard enthalpy (Δ H°), and standard entropy (Δ S°) were evaluated by applying the Van’t Hoff equation, which describes the dependence of equilibrium constant on temperature. The thermodynamics of Pb(II) adsorption onto the tobacco stems indicated that the adsorption was spontaneous and endothermic. Langmuir and Freundlich isotherms were used to analyze the equilibrium data at different temperatures and the equilibrium data were found to fit Freundlich isotherm equation better than Langmuir isotherm. The adsorption was analyzed using pseudo-second-order kinetic equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call