Abstract

Amplification promoting sequence (aps), from tobacco rDNA, was found to induce amplification and enhances the expression of heterologous genes, consequently increasing the expression of transgenic proteins in tobacco. In this report we demonstrate that aps element also affects integration, transcription, and translation of a soybean protease inhibitor, Bowman-Birk inhibitor (BBI), in transgenic tomato plants and quantifies its effects in different expression vectors. A synthetic bbi gene was constructed, based on the wild-type gene containing two independent inhibition sites; trypsin and chymotrypsin. Transformation vectors were designed using two different promoters; the tomato fruit specific E8 promoter and the constitutively active 35S CaMV promoter. These vectors were transformed into 'Moneymaker' tomato plants. In tomato fruits and leaves, aps caused a 3-fold increase in bbi mRNA levels when compared to the lines without aps. Similar increases were obtained in plants expressing bbi controlled by E8 or 35S CaMV promoters. Also, the level of BBI protein expression in aps-transformed plants was 3 fold-higher than in plants without aps. This is the first report of aps effect on the enhanced gene expression and transgenic protein production in plant other than tobacco.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call