Abstract

When tobacco is provided with a high nitrate supply, only a small amount of the nitrate taken up by the roots is immediately assimilated inside the roots, while the majority is transported to the leaves where it is reduced to ammonium. To elucidate the importance of root nitrate assimilation, tobacco plants have been engineered that showed no detectable nitrate reductase activity in the roots. These plants expressed the nitrate reductase structural gene nia2 under control of the leaf-specific potato promoter ST-LS1 in the nitrate reductase-mutant Nia30 of Nicotiana tabacum. Homozygous T2-transformants grown in sand or hydroponics with 5.1 mM nitrate had approximately 55-70% of wild-type nitrate reductase acivity in leaves, but lacked nitrate reductase acivity in roots. These plants showed a retarded growth as compared with wild-type plants. The activation state of nitrate reductase was unchanged; however, diurnal variation of nitrate reductase acivity was not as pronounced as in wild-type plants. The transformants had higher levels of nitrate in the leaves and reduced amounts of glutamine both in leaves and roots, while roots showed higher levels of hexoses (3-fold) and sucrose (10-fold). It may be concluded that the loss of nitrate reductase acivity in the roots changes the allocation of reduced nitrogen compounds and sugars in the plant. These plants will be a useful tool for laboratories studying nitrate assimilation and its interactions with carbon metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call