Abstract

For cancer therapy, viruses have been utilized as excellent delivery vehicles because of their facile transfection efficiency in their host cells. However, their inherent immunogenicity has become the major obstacle for their translation into approved pharmaceuticals. Herein, we utilized rodlike plant virus, tobacco mosaic virus (TMV), which is nontoxic to mammals and mainly infects tobacco species, as anticancer nanorod-drug vector for cancer therapy study. Doxorubicin (DOX) was installed in the inner cavity of TMV by hydrazone bond, which enabled the pH-sensitive drug release property. Conjugation of cyclic Arg-Gly-Asp (cRGD) on the surface of TMV can enhance HeLa cell uptake of the carrier via the integrin-mediated endocytosis pathway. Comparing with free DOX, the cRGD-TMV-hydra-DOX vector had similar cell growth inhibition and much higher apoptosis efficiency on HeLa cells. Moreover, the in vivo assay assumed that cRGD-TMV-hydra-DOX behaved similar antitumor efficiency but much lower side effect on HeLa bearing Balb/c-nu mice. Our work provides novel insights into potentially cancer therapy based on rodlike plant viral nanocarriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call