Abstract

We discuss the nature of slow relaxation processes in glass-forming eutectic melts right after melting. For specific, we focus on the binary metallic melt Al–Y, which in addition to the slow relaxation shows unusual non-monotonic dynamics. We argue this slow dynamic the result of non-linearity of diffusion processes in the initially non-homogenous sample, and the nature of slow relaxation processes in eutectic melts after melting is similar to the nature of spinodal decomposition when the reason for the slowdown is the thermodynamic instability. To support this assertion we considered the model with combined Gibbs potential of the Al-Y liquid solution, in which the presence of the stoichiometric phase remains is taken into account. We show that in this system the instability mathematically described by the Cahn–Hilliard type equation can develop, and that fluctuation accounting in the considered model allows qualitatively describe the non-monotonic relaxation observed in the Al-based non-equilibrium melts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.