Abstract

Spin–charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges −e and spins 1/2. It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call