Abstract

Evolution of pressure perturbations propagating in pipeline filled with gas-and-drop medium representing “wet” methane at temperature below dew point and having damaged section, in form of extended narrowing of channel due to hydrate plug, is investigated. Hydrate formation is due to the presence of water (or its vapours) and gas, the components of which dissolve in water under certain conditions form a solid phase. Hydrate deposits help to reduce the cross-country capacity of gas pipelines and therefore their detection is a pressing task. It is proposed to solve the problem using acoustic methods. For this purpose mathematical model of propagation of acoustic waves in long-wave range in gas-and-droplet medium is considered. The horizontal pipeline appears semi-pointed, the solution is sought in the form of a harmonic wave. Wave is one-dimensional, having small amplitude of oscillations. Based on dispersion equations, dependence of phase velocity and attenuation coefficient on frequency of acoustic wave disturbance and on volume content of suspended phase (water droplets) are built. In the high frequency region, the attenuation coefficient increases with the volume content. The formulas for reflection and passage coefficients are derived taking into account pipeline narrowing due to hydrate deposits. The results of numerical calculations illustrating the dynamics of pulse signals depending on the thickness of the gas hydrate on the inner wall of the pipeline are presented. Calculations are based on forward and backward Fourier transformations and the use of software. It is established that the greater the hydrate deposit on the wall in thickness, the greater the amplitude of the returned reflected signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.