Abstract
The article defines stress fields near the tips of mathematical cracks in an isotropic linearly elastic plate with two horizontal collinear cracks lying on a straight line of different lengths under the uniaxial tensile condition, using two approaches - experimental, based on the method of digital photomechanics, and numerical, based on finite element calculations. To represent the stress field at the tip of the section, the Williams polynomial series is used - the canonical representation of the field at the top of the mathematical section of a two-dimensional problem of elasticity theory for isotropic media. The main idea of the current study is to take into consideration the regular (non-singular) terms of the series and analyze their impact on the holistic description of the stress field in the immediate vicinity of the top of the section. The first fifteen coefficients of the Max Williams series were preserved and determined in accordance with experimental patterns of isochromatic bands and finite element modeling. To extract the coefficients of the Williams series used a redefined method designed to solve systems of algebraic equations, the number of which is significantly greater than the unknown - amplitude multipliers. The influence of the non-singular terms of the Williams series on the processing of the experimental pattern of interference fringes is demonstrated. It is validated that the preservation of the terms of a high order of smallness makes it possible to expand the area adjacent to the tip of the crack, from which experimental points can be selected. The finite element study was carried out in the SIMULIA Abaqus engineering analysis system, in which experimental samples tested in a full-scale experiment were reproduced. It is revealed that the results obtained by the two methods are in good agreement with each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Samara University. Natural Science Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.