Abstract

We study the solvability of the Ionkin problem for some differential equations with one space variable. These equations include parabolic and quasiparabolic, hyperbolic and quasihyperbolic, pseudoparabolic and pseudohyperbolic, elliptic and quasielliptic equations and equations of many other types. For the above equations, the following theorems are proved with the use of the splitting method: the existence of regular solutions—solutions that all have weak derivatives in the sense of S. L. Sobolev and occur in the corresponding equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.