Abstract

Reordering poses a major challenge in machine translation (MT) between two languages with significant differences in word order. In this paper, we present a novel reordering approach utilizing sparse features based on dependency word pairs. Each instance of these features captures whether two words, which are related by a dependency link in the source sentence dependency parse tree, follow the same order or are swapped in the translation output. Experiments on Chinese-to-English translation show a statistically significant improvement of 1.21 BLEU point using our approach, compared to a state-of-the-art statistical MT system that incorporates prior reordering approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.