Abstract
The algorithm of ∇V-factorization, suggested earlier for decomposing one- and two-parameter polynomial matrices of full row rank into a product of two matrices (a regular one, whose spectrum coincides with the finite regular spectrum of the original matrix, and a matrix of full row rank, whose singular spectrum coincides with the singular spectrum of the original matrix, whereas the regular spectrum is empty), is extended to the case of q-parameter (q ≥ 1) polynomial matrices. The algorithm of ∇V-q factorization is described, and its justification and properties for matrices with arbitrary number of parameters are presented. Applications of the algorithm to computing irreducible factorizations of q-parameter matrices, to determining a free basis of the null-space of polynomial solutions of a matrix, and to finding matrix divisors corresponding to divisors of its characteristic polynomial are considered. Bibliogrhaphy: 4 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.