Abstract

Inhibitory control (IC) emerges in infancy, continues to develop throughout childhood and is linked to later life outcomes such as school achievement, prosocial behavior, and psychopathology. Little, however, is known about the neural processes underpinning IC, especially in 2-year-olds. In this study, we examine functional connectivity (FC) in 2.5-year-olds while recording hemodynamic responses via functional infrared spectroscopy (fNIRS) during a traditional snack delay task. We found that functional connectivity strength between left frontal and parietal cortex and bilateral parietal cortex were positively associated with performance on this task. The current findings present the first neural data for toddlers during this IC task. Further, these data are the first to link this self-regulatory process to differences in brain development within this population. Implications for future directions and work with clinical populations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.