Abstract
Background/PurposeThis work evaluated the suitability of MR derived sequences for use in online adaptive RT workflows on a 1.5 Tesla (T) MR-Linear Accelerator (MR Linac). Materials/MethodsNon-patient volunteers were recruited to an ethics approved MR Linac imaging study. Participants attended 1-3 imaging sessions in which a combination of DIXON, 2D and 3D volumetric T1 and T2 weighted images were acquired axially, with volunteers positioned using immobilisation devices typical for radiotherapy to the anatomical region being scanned.Images from each session were appraised by three independent reviewers to determine optimal sequences over six anatomical regions: head and neck, female and male pelvis, thorax (lung), thorax (breast/chest wall) and abdomen. Site specific anatomical structures were graded by the perceived ability to accurately contour a typical organ at risk. Each structure was independently graded on a 4-point Likert scale as ‘Very Clear’, ‘Clear’, ‘Unclear’ or ‘Not visible’ by observers, consisting of radiographers (therapeutic and diagnostic) and clinicians. ResultsFrom July 2019 to September 2019, 18 non-patient volunteers underwent 24 imaging sessions in the following anatomical regions: head and neck (n=3), male pelvis (n=4), female pelvis (n=5), lung/oesophagus (n=5) abdomen (n=4) and chest wall/breast (n=3). T2 sequences were the most preferred for perceived ability to contour anatomy in both male and female pelvis. For all other sites T1 weighted DIXON sequences were most favourable. ConclusionThis study has determined the preferential sequence selection for organ visualisation, as a pre-requisite to our institution adopting MR-guided radiotherapy for a more diverse range of disease sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.