Abstract

Feedback control laws have been traditionally implemented in a periodic fashion on digital hardware. Although periodicity simplifies the analysis of the mismatch between the control design and its digital implementation, it also leads to conservative usage of resources such as CPU utilization in the case of embedded control. We present a novel technique that abandons the periodicity assumption by using the current state of the plant to decide the next time instant in which the state should be measured, the control law computed, and the actuators updated. This technique, termed self-triggered control, is developed for two classes of nonlinear control systems, namely, state-dependent homogeneous systems and polynomial systems. The wide applicability of the proposed results is illustrated in two well known physical examples: a jet engine compressor and the rigid body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.