Abstract

AbstractIn many species, a few individuals produce most of the next generation. How much of this reproductive skew is driven by variation among individuals in fixed traits, how much by external factors, and how much by random chance? And what does it take to have truly exceptional lifetime reproductive output (LRO)? In the past, we and others have partitioned the variance of LRO as a proxy for reproductive skew. Here we explain how to partition LRO skewness itself into contributions from fixed trait variation, four forms of "demographic luck" (birth state, fecundity luck, survival trajectory luck, and growth trajectory luck), and two kinds of "environmental luck" (birth environment and environment trajectory). Each of these is further partitioned into contributions at different ages. We also determine what we can infer about individuals with exceptional LRO. We find that reproductive skew is largely driven by random variation in lifespan, and exceptional LRO generally results from exceptional lifespan. Other kinds of luck frequently bring skewness down rather than increasing it. In populations where fecundity varies greatly with environmental conditions, getting a good year at the right time can be an alternate route to exceptional LRO, so that LRO is less predictive of lifespan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.