Abstract

ObjectiveScar tissue is an identified cause for the development of malignant ventricular arrhythmias in patients of myocardial infarction, which ultimately leads to cardiac death, a fatal outcome. We aim to evaluate the left ventricular endocardial Scar tissue pattern using Radon descriptor-based machine learning. We performed automated Left ventricle (LV) segmentation to find the LV endocardial wall, performed morphological operations, and marked the region of the scar tissue on the endocardial wall of LV. Motivated by a Radon descriptor-based machine learning approach; the patches of 17 patients from Computer tomography (CT) images of the heart were used and categorized into “endocardial Scar tissue” and “normal tissue” groups. The ten feature vectors are extracted from patches using Radon descriptors and fed into a traditional machine learning model.ResultsThe decision tree has shown the best performance with 98.07% accuracy. This study is the first attempt to provide a Radon transform-based machine learning method to distinguish patterns between “endocardial Scar tissue” and “normal tissue” groups. Our proposed research method could be potentially used in advanced interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.