Abstract

PurposeTo demonstrate the feasibility of a new method for measuring T1 of short T2 species based on an adiabatic inversion recovery-prepared three-dimensional ultrashort echo time Cones (3D IR-UTE-Cones) sequence. MethodsT1 values for short T2 species were quantified using 3D IR-UTE-Cones data acquired with different repetition times (TRs) and inversion times (TIs). An inversion efficiency factor Q was introduced into the fitting model to accurately calculate T1 values for short T2 species. Experiments were performed on twelve MnCl2 aqueous solution phantoms with a wide range of T1 values and T2* values on a 3 T clinical MR system to verify the efficacy of the proposed method. For comparison, a variable flip angle UTE (VFA-UTE) sequence, a variable TR UTE (VTR-UTE) sequence, and a conventional 2D IR fast spin echo (IR-FSE) sequence were also used to quantify T1 values of those phantoms. T1 values were compared between all performed sequences. ResultsThe proposed 3D IR-UTE-Cones method provided higher contrast images of short T2 phantoms and measured much shorter T1 values than the VFA-UTE, VTR-UTE and 2D IR-FSE methods. T1 values as short as 2.95 ms could be measured by the 3D IR-UTE-Cones sequence. The 3D IR-UTE-Cones methods with different TRs were applied to different ranges of T1 measurement, and the scan time was significantly decreased by using 5 TIs along the recovery curves to perform fitting with comparable accuracy. ConclusionThe 3D IR-UTE-Cones sequence could accurately measure short T1 values while providing high contrast images of short T2 species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call