Abstract

Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Seventy-three undergraduate students were assessed on their prior knowledge and misconceptions about Newtonian mechanics, and then reported their achievement goals and participated in think-aloud protocols while reading Newtonian physics texts. A mastery-approach goal orientation positively predicted deep processing strategies, shallow processing strategies, and conceptual change. In contrast, a performance-approach goal orientation did not predict either of the processing strategies, but negatively predicted conceptual change. A performance-avoidance goal orientation negatively predicted deep processing strategies and conceptual change. Moreover, deep and shallow processing strategies positively predicted conceptual change as well as recall. Finally, both deep and shallow processing strategies mediated relations between mastery-approach goals and conceptual change. Results provide some support for Dole and Sinatra's (1998) Cognitive Reconstruction of Knowledge Model of conceptual change but also challenge specific facets with regard to the role of depth of processing in conceptual change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call