Abstract

To improve corrosion resistance and hemocompatibility of magnesium alloy (Mg alloy), a polymerized 2-methacryloyloxyethyl phosphorycholine (PMPC) coating was fabricated via surface thiol-ene photopolymerization onto Mg alloy treated by cathodic plasma electrolytic deposition (CPED). Surface morphology, chemical composition and phase composition of CPED layer and CPED/PMPC composite coating were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) illustrated that the corrosion resistane of Mg alloy in simulated body fluid (SBF) was significantly enhanced after the formation of CPED/PMPC composite coating. Platelets adhesion measurement indicated that CPED/PMPC treated Mg alloy possesses promising hemocompatibility. The approach presented here affords an effective alternative for surface modification of Mg alloy to meet the requirements of vascular scaffold materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call