Abstract
Larval helminths in intermediate hosts often stop growing long before their growth is limited by host resources, and do not grow at all in paratenic hosts. We develop our model [Ball, M.A., Parker, G.A., Chubb, J.C., 2008. The evolution of complex life cycles when parasite mortality is size- or time-dependent. J. Theor. Biol. 253, 202–214] for optimal growth arrest at larval maturity (GALM) in trophically transmitted helminths. This model assumes that on entering an intermediate host, larval death rate initially has both time- (or size-) dependent and time-constant components, the former increasing as the larva grows. At GALM, mortality changes to a new and constant rate in which the size-dependent component is proportional to that immediately before GALM. Mortality then remains constant until death or transmission to the definitive host. We analyse linear increasing and accelerating forms for time-dependent mortality to deduce why there is sometimes growth (intermediate hosts) and sometimes no growth (paratenic hosts). Calling i the intermediate or paratenic host, and j the definitive host, conditions favouring paratenicity are: (i) high values in host i for size at establishment, size-related mortality, expected intensity, (ii) low values in host i for size-independent mortality rate, potential growth rate, transmission rate to j, and ratio of death rate in j/growth rate in j. Opposite conditions favour growth in the (intermediate) host, either to GALM or until death without GALM. We offer circumstantial evidence from the literature supporting some of these predictions. In certain conditions, two of the three possible growth strategies (no growth; growth to an optimal size then growth arrest (GALM); unlimited growth until larval death) can exist as local optima. The effect of the discontinuity in death rate after GALM is complex and depends on mortality and growth parameters in the two hosts, and on the mortality functions before and after GALM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.