Abstract
We study a model of competition between two types evolving as branching random walks on Zd. The two types are represented by red and blue balls, respectively, with the rule that balls of different colour annihilate upon contact. We consider initial configurations in which the sites of Zd contain one ball each which are independently coloured red with probability p and blue otherwise. We address the question of fixation, referring to the sites and eventually settling for a given colour or not. Under a mild moment condition on the branching rule, we prove that the process will fixate almost surely for p≠1/2 and that every site will change colour infinitely often almost surely for the balanced initial condition p=1/2.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.