Abstract

Previous studies have found that the striatum and the cerebellum played important roles in nicotine dependence, respectively. In heavy smokers, however, the effect of resting-state functional connectivity of cerebellum-striatum circuits in nicotine dependence remained unknown. This study aimed to explore the role of the circuit between the striatum and the cerebellum in addiction in heavy smokers using structural and functional magnetic resonance imaging. The grey matter volume differences and the resting-state functional connectivity differences in cerebellum-striatum circuits were investigated between 23 heavy smokers and 23 healthy controls. The cigarette dependence in heavy smokers and healthy controls were evaluated by using Fagerström Test. Then, we applied mediation analysis to test whether the resting-state functional connectivity between the striatum and the cerebellum mediates the relationship between the striatum morphometry and the nicotine dependence in heavy smokers. Compared with healthy controls, the heavy smokers' grey matter volumes decreased significantly in the cerebrum (bilateral), and increased significantly in the caudate (bilateral). Seed-based resting-state functional connectivity analysis showed significantly higher resting-state functional connectivity among the bilateral caudate, the left cerebellum, and the right middle temporal gyrus in heavy smokers. The cerebellum-striatum resting-state functional connectivity fully mediated the relationship between the striatum morphometry and the nicotine dependence in heavy smokers. Heavy smokers showed abnormal interactions and functional connectivity between the striatum and the cerebellum, which were associated with the striatum morphometry and nicotine dependence. Such findings could provide new insights into the neural correlates of nicotine dependence in heavy smokers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call