Abstract
The streams, rivers, freshwater lakes, and coastal and open ocean waters of the world have been used for centuries for the disposal of municipal and industrial wastes. During the twentieth century, the range and quantities of waste materials discharged to the world's fresh and salt waters have grown progressively, increasing the potential ecological and human health impacts. The types and quantities of organic and inorganic wastes reaching the surface waters and associated sediments have increased in proportion to a region's or nation's population and industrial growth. Many of the contaminaants deliberately or inadvertently discharged to waterways are hydrophobic, are not biodegradable, or are highly resistant to degradation resulting in the accumulation of organic and inorganic substances in the waters, bottom, and suspended sediments of impacted waterways. Because of their persistence, these compounds and trace metals bioaccumulate and bioconcentreate in the aquatic organisms that occupy the affected waterway. Because many of the discharged waste materials are relatively insoluble and readily sorb to particles, the bottom and suspended sediments will commonly have higher contaminant concentrations than the associated overlying waters. Concentrations will normally decrease downstream of the contaminant source areas due to inputs and dilution by sediments and waters from cleaner tributaries. Although the sediments will normally have the higher concentrations, considerable quantities of contaminants may be found in the aqueous phase requiring not only removal of the solids, but treatment of the associated water as well. This is particularly the case when the water to solids recovered during dredging may approach 10:1. Many of the persistent contaminants impacting a nation's waterways are readily sorbed to the finer-grained, organic rich sediments. Reaches of rivers and streams, or areas amenable to deposition of organic rich clays and silts, result in the creation of “hot spots” of contamination, localized areas where higher contaminant concentrations are found. It is these “hot spots” that are at the center of a debate over whether to dredge or leave the contaminated sediments undisturbed to allow natural attenuation to work. It is well recognized that dredging is not able to remove all of the contaminated sediments; some portion of the resuspended sediments created during the dredgirg will be dispersed downstream. The issue is whether to physically removeportions of the mass of contaminants impacting waterwa-ys or rely on natural attenuation. Environmental dredging is expensive and many argue not worth the effort because of the lack of effective technologies that will prevent redistribution of the material resuspended as apart oJthe dredging process and management of associated water. Opponents of dredging cite natural attenuation and burial by cleaner sediments as eflective mechanisms to reduce the concentration of contaminants. Dredgingproponents argue the contaminant sources and accumulated hot spots must be removed in order to accelerate ecological recovery of the impacted waterway as well as reduce impacts to the environment and to public heulth. During thc next several years, decisions will be made by the U.S. Environmental Protection Agemy (USEPA) on whether to dredge major and minor waterways involving millions of cubic yards of contaminatedsedinaents requiring expenditures of hundreds of millions oj-dollars by the responsible parties. © 2000 John Wiley & Sons, Innc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.