Abstract

AbstractIn two recent articles, Sims (1988) and Sims and Uhlig (1988/1991) question the value of much of the ongoing literature on unit roots and stochastic trends. They characterize the seeds of this literature as ‘sterile ideas’, the application of nonstationary limit theory as ‘wrongheaded and unenlightening’, and the use of classical methods of inference as ‘unreasonable’ and ‘logically unsound’. They advocate in place of classical methods an explicit Bayesian approach to inference that utilizes a flat prior on the autoregressive coefficient. DeJong and Whiteman adopt a related Bayesian approach in a group of papers (1989a,b,c) that seek to re‐evaluate the empirical evidence from historical economic time series. Their results appear to be conclusive in turning around the earlier, influential conclusions of Nelson and Plosser (1982) that most aggregate economic time series have stochastic trends. So far these criticisms of unit root econometrics have gone unanswered; the assertions about the impropriety of classical methods and the superiority of flat prior Bayesian methods have been unchallenged; and the empirical re‐evaluation of evidence in support of stochastic trends has been left without comment.This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions, and the conclusions of these articles on the Bayesian analysis of unit roots. Our approach is also Bayesian but we employ what are known in the statistical literature as objective ignorance priors in our analysis. These are developed in the paper to accommodate explicitly time series models in which no stationarity assumption is made. Ignorance priors are intended to represent a state of ignorance about the value of a parameter and in many models are very different from flat priors. We demonstrate that in time series models flat priors do not represent ignorance but are actually informative (sic) precisely because they neglect generically available information about how autoregressive coefficients influence observed time series characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences towards stationary and i.i.d. alternatives where they do represent ignorance, as in the linear regression model. This bias helps to explain the outcome of the simulation experiments in Sims and Uhlig and some of the empirical results of DeJong and Whiteman.Under both flat priors and ignorance priors this paper derives posterior distributions for the parameters in autoregressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior distributions are obtained by using the Laplace approximation for multivariate integrals along the lines suggested by the author (Phillips, 1983) in some earlier work. The bias towards stationary models that arises from the use of flat priors is shown in our simulations to be substantial; and we conclude that it is unacceptably large in models with a fitted deterministic trend, for which the expected posterior probability of a stochastic trend is found to be negligible even though the true data generating mechanism has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the results of classical methods. An interesting outcome of our simulations and our empirical work is the bimodal Bayesian posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like classical confidence intervals that are based on asymptotic theory. The paper concludes with an empirical application of our Bayesian methodology to the Nelson‐Plosser series. Seven of the 14 series show evidence of stochastic trends under ignorance priors, whereas under flat priors on the coefficients all but three of the series appear trend stationary. The latter result corresponds closely with the conclusion reached by DeJong and Whiteman (1989b) (based on truncated flat priors). We argue that the DeJong‐Whiteman inferences are biased towards trend stationarity through the use of flat priors on the autoregressive coefficients, and that their inferences for some of the series (especially stock prices) are fragile (i.e. not robust) not only to the prior but also to the lag length chosen in the time series specification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.