Abstract

Based on ab initio calculations using the Gaussian-4 method, we propose a new catalytic mechanism for the Beckmann rearrangement in concentrated H2SO4. Our calculations suggest that H2SO4 catalyzes the 1,2-proton-shift step via a cyclic transition structure, in which H2SO4 acts as a proton-transfer bridge. The reaction barrier for this mechanism is lower by 48.1kJmol−1 than the barrier for the previously suggested catalytic mechanism, which involves a strained 3-memberd-ring transition structure. According to the previous mechanism the 1,2-proton shift has the highest activation energy, while in the revised mechanism the highest activation energy is obtained for the ensuing rearrangement/dehydration step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.