Abstract

Auxins are chemical compounds of wide interest, mostly due to their role in plant metabolism and development. Synthetic auxins have been used as herbicides for more than 75 years and low toxicity in humans is one of their most advantageous features. Extensive studies of natural and synthetic auxins have been made in an effort to understand their role in plant growth. However, molecular details of the binding and recognition process are still an open question. Herein, we present a comprehensive in silico pipeline for the assessment of TIR1 ligands using several structure-based methods. Our results suggest that subtle dynamics within the binding pocket arise from water–ligand interactions. We also show that this trait distinguishes effective binders. Finally, we construct a database of putative ligands and decoy compounds, which can aid further studies focusing on synthetic auxin design. To the best of our knowledge, this study is the first of its kind focusing on TIR1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call