Abstract

Electronic traps at the inorganic-organic interface of colloidal quantum dots (QDs) are detrimental to their luminescent properties. Several types of interface traps were identified for single-crystalline CdSe/CdS core/shell QDs, which were all found to be extrinsic to either the core/shell structure or their optical performance. The electron traps-presumably excess or unpassivated Cd surface sites-are shallow ones and could be readily isolated from the electron wave function of the excitons with more than ∼2 monolayers of CdS shell. There were two identifiable deep hole traps within the bandgap of the QDs, i.e., the surface adsorbed H2S and unpassivated surface S sites. The surface adsorbed H2S could be removed by either degassing processes or photochemical decomposition of H2S without damaging the QDs. The unpassivated surface S sites could be removed by surface treatment with cadmium carboxylates. Understanding of the surface traps enabled establishment of new phosphine-free synthetic schemes for either single-precursor or successive-ion-layer-adsorption-and-reaction approach, which yielded CdSe/CdS core/shell QDs with near-unity photoluminescence quantum yield and monoexponential photoluminescence decay dynamics with 2-10 monolayers of CdS shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.