Abstract

The theory of spin-orbit interaction, developed by E.I. Rashba more than 30 years ago, stimulated the rapid development of a new discipline – spintronics – the physics of processes and devices based on the control of spins. The paper summarizes achievements of Prof. Rashba in the early stage of his scientific researches, particularly those, which were performed in Ukraine. Among them, prediction of electric dipole spin resonance (EDSR), phase transitions in spin-orbit coupled systems driven by change of the Fermi surface topology, giant oscillator strength of impurity excitons, and coexistence of free and self-trapped excitons. Solid state physics is the basis of contemporary electronics and optoelectronics. Various electronic, optical, acoustical and other effects and processes in solid define performances of modern solid state devices. Multitude of groups and thousands researchers are involved in discovering, study and using relevant new phenomena. Among them, Professor Emmanuel Rashba with his outstanding results in physics of crystals is seen (rises) as a profound personality. His contribution in almost all branches of solid state physics cannot be exaggerated, some of his results have found important applications. Prof. E.I. Rashba is known as one of the leading theorists in Ukraine, in Soviet Union, and he continued the successful career in United States. Although many years have already passed, scientific community in Ukraine remembers Prof. E.I. Rashba and thankfully appreciates his impact to formation of condensed matter researches in our country. This short text is devoted to Prof. E.I. Rashba and is written on the occasion of his birthday.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.