Abstract

Osteoporosis is a common disease that is characterized by low bone mineral density (BMD), deterioration in bone microarchitecture, and increased fracture risk. Due to its important role in bone biology, the TNFRSF11B gene, coding for OPG, has been considered as a candidate gene for osteoporosis. In this study, single nucleotide polymorphisms (SNPs) A163G, T245G, and G1181C (rs3102735, rs3134069, and rs2073618, respectively) within the TNFRSF11B gene were studied for association with BMD and fracture incidence in a cohort of 327 postmenopausal Slovak women. Genomic DNA was extracted and purified from peripheral blood leukocytes by the commercial kit JetQuick (Genomed GmbH, Germany) using a standard protocol. Genotyping was performed using the Custom TaqMan® SNP Genotyping Assays. The lumbar L1-L4 spine BMD (g/cm(2)) and T-score in the subgroup of Slovak postmenopausal women with osteoporotic fractures were significantly lower than those in the subgroup of women without fracture (p = 0.0025; p = 0.0009). We identified the T245G (rs3134069) polymorphism in the TNFRSF11B gene associated with osteoporotic fractures (vertebral fractures: p = 0.0320; non-vertebral fractures: p = 0.0005; all fractures: 0.0000). The polymorphism T245G (rs3134069) in the TNFRSF11B gene could be used together with other genetic markers to identify individuals at high risk of osteoporotic fractures. The results from the present study provided more evidence to reveal the role of TNFRSF11B gene polymorphisms in BMD and the risk of osteoporotic fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call