Abstract

The hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) signaling pathway is involved in several inflammatory conditions, where tumor necrosis factor-α (TNFα) is one of the inflammatory cytokines activated during sepsis. Therefore, the present study investigated the role of the NF-κB transcription factor binding site in the transcriptional regulation of the CSE gene in 293T cells following treatment with TNFα using luciferase assays, as well as using western blotting and reverse transcription-quantitative PCR to examine the effect of TNFα on CSE expression in HUVECs. After transfected 293T cells were incubated with various concentrations of TNFα for 1, 3, and 6 h, the wild-type promoter of the CSE gene increased significantly at 1 h compared to 0 h. By contrast, after the transfected 293T cells were incubated with various concentrations of TNFα for 1 h, the mutant-type promoter activity of the CSE gene decreased significantly compared to the wild-type. These results revealed that the DNA sequence GGGACATTCC on the CSE gene promoter was directly associated with the transcriptional regulation of the CSE gene in Human cells (293T cells) that's were treated with TNFα. This suggests that TNFα affects CSE gene expression, such that vascular endothelial cells respond to TNFα in the blood by regulating CSE expression. The regulatory mechanisms associated with the effects of TNFα on the transcriptional regulation of the CSE gene in HUVECs and the NF-κB pathway warrant further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.