Abstract

Tumor necrosis factor-alpha (TNF-alpha) is a potent inhibitor of connective tissue formation. The cellular effects of TNF-alpha are mediated by two distinct cell-surface receptors, TNF-R55 and TNF-R75, both present on various types of cells, including fibroblasts. In this study we wanted to elucidate the role of TNF-R55 as a mediator of the connective tissue effects of TNF-alpha by using a mutant, TNF-R55-specific form of human TNF-alpha. This mutant TNF-alpha markedly induced collagenase and stromelysin-1 gene expression in dermal fibroblasts, the maximal activation (up to 42-fold) being 65%-89% of that noted with wild-type human TNF-alpha. In addition, TNF-R55-specific TNF-alpha suppressed type I collagen mRNA levels as potently as wild-type TNF-alpha (by 60%). The enhancement of collagenase gene expression by TNF-R55-specific TNF-alpha was augmented by simultaneous treatment of normal and scleroderma skin fibroblasts with interferon-gamma, indicating specific enhancement of TNF-R55 signaling pathway by interferon-gamma. These results show that stimulation of the TNF-R55 signaling pathway is sufficient for the inhibitory effects of TNF-alpha on extracellular matrix formation by dermal fibroblasts. It is conceivable that due to reduced systemic toxicity, TNF-R55-specific forms of human TNF-alpha may prove to be feasible in the therapy of fibrotic disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.