Abstract
Claudin-1 (CL-1) is responsible for the paracellular barrier function of glomerular parietal epithelial cells (PEC) in kidneys, but the role of CL-1 in proximal tubules remains to be elucidated. In this study, to evaluate CL-1 as a potential therapeutic drug target for chronic kidney disease, we investigated change of CL-1 expression in the proximal tubules of diseased kidney and elucidated the factors that induced this change. We established Alport mice as a kidney disease model and investigated the expression of CL-1 in diseased kidney using quantitative PCR and immunohistochemistry (IHC). Compared to wild type mice, Alport mice showed significant increases in plasma creatinine, urea nitrogen and urinary albumin excretion. CL-1 mRNA was increased significantly in the kidney cortex and CL-1 was localized on the adjacent cell surfaces of PECs and proximal tubular epithelial cells. The infiltration of inflammatory cells around proximal tubules and a significant increase in TNF-α mRNA were observed in diseased kidneys. To reveal factors that induce CL-1, we analyzed the induction of CL-1 by albumin or tumor necrosis factor (TNF)-α in human proximal tubular cells (RPTEC/TERT1) using quantitative PCR and Western blotting. TNF-α increased CL-1 expression dose-dependently, though albumin did not affect CL-1 expression in RPTEC/TERT1. In addition, both CL-1 and TNF-α expression were significantly increased in UUO mice, which are commonly used as a model of tubulointerstitial inflammation without albuminuria. These results indicate that CL-1 expression is induced by inflammation, not by albuminuria in diseased proximal tubules. Moreover, we examined the localization of CL-1 in the kidney of IgA nephropathy patients by IHC and found CL-1 expression was also elevated in the proximal tubular cells. Taken together, CL-1 expression is increased in the proximal tubular epithelial cells of diseased kidney. Inflammatory cells around the tubular epithelium may produce TNF-α which in turn induces CL-1 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.