Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affect the joints and inflammatory cell migration into inflamed articular sites contribute to this disease. Among the inflammatory cells, human mucosal-associated invariant T (MAIT) cells were recently recognized as critical cellular component with a pathological role in RA. However, their migratory characteristics are poorly understood. The aim of this study was to determine whether human MAIT cells preferentially traffick to inflamed synovial sites in rheumatoid arthritis patients and to elucidate the underlying mechanism. First, we found that TNFα and IL-1β were elevated in synovial fluid (SF) of RA patients, which resulted in increased expression of E-selectin, ICAM-1 and V-CAM-1 on blood vessel endothelial cells. To understand whether TNFα and IL-1β in the SF facilitated MAIT cell migration, we analyzed CD161+ TCRα7.2+ MAIT and other CD3+ T cells for differences in migratory capacity. Collectively, our results demonstrate that TNFα and IL-1β in the SF facilitated MAIT cell migration dependent on expression of selectin ligand, sialyl LewisX (sLeX) and CCR6 on MAIT cells. We also showed that MAIT cells in the SF from RA patients equipped upregulated sLeX compared to the peripheral blood of RA patients and healthy persons, which suggest that TNFα and IL-1β mediated expression of E-selectin preferentially attract sLeX mediated MAIT cell migration into the SF of RA patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.