Abstract

Alcoholic liver disease is associated with an increase in the number of necrotic and apoptotic liver parenchymal cells. Part of this injury is mediated by TNF-alpha. Ethanol exposure sensitizes cells to the cytotoxic effects of TNF-alpha. This may be due, in part, to the increased propensity of the mitochondria in ethanol-exposed cells to induction of mitochondrial permeability transition (MPT) by various agents, including the proapoptotic protein Bax. This idea is supported by the observation that increased cell death induced by TNF-alpha in ethanol-exposed cells was dependent on development of the MPT. In the present study, we elucidate the pathways through which ethanol exposure enhances TNF-alpha induction of the MPT and the resulting cytotoxicity. Specifically, ethanol-exposed cells display caspase-8- and Bid-independent cell killing during TNF-alpha treatment. Moreover, the ethanol-enhanced pathway is dependent on p38 MAPK signaling, which brings about caspase-3 activation, mitochondrial depolarization, accumulation of cytochrome c in the cytosol, and the translocation of Bax to the mitochondria. Additionally, ethanol-exposed cells display a blunting of TNF-alpha-induced Akt activation and Bcl-2 antagonist of cell death phosphorylation that may account, in part, for the increased sensitivity of the mitochondria to Bax-mediated damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call