Abstract

Tumor necrosis factor alpha (TNF-alpha), a multifunctional cytokine, has been identified in the ovary, oviduct, uterus, and placenta, and is expressed in embryonic tissues. For many years TNF-alpha was mainly considered to be a cytokine involved in triggering immunological pregnancy loss and as a mediator of various embryopathic stresses. However, data collected during the last decade has characterized TNF-alpha not only as a powerful activator of apoptotic, but also antiapoptotic signaling cascades, as well as revealed its regulatory role in cell proliferation. This review summarizes and conceptualizes the studies addressing TNF-alpha-activated intracellular signaling and the possible functional role of TNF-alpha in embryonic development. Studies addressing the role of TNF-alpha in intercellular signaling, in vivo studies addressing the functional role TNF-alpha in spontaneous and induced pregnancy loss, and studies addressing the role of TNF-alpha in fetal malformations were reviewed. Comparative studies in TNF-alpha knockout and TNF-alpha positive mice were performed to evaluate embryonic death, structural anomalies in fetuses, the degree of apoptosis and cell proliferation, and the activity of molecules such as caspases 3 and 8, the NF-kappaB, (RelA), IkappaBalpha in some target embryonic organs shortly after exposure to embryopathic stresses. It is proposed that the possible essential function of TNF-alpha may be to prevent the birth of offspring with structural anomalies. TNF-alpha will boost death signaling to kill the embryo if initial events (damages) triggered by detrimental stimuli may culminate in structural anomalies, and stimulate protective mechanisms if the repair of these damages may prevent maldevelopment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call