Abstract

We tested the hypothesis that regulation of tumor necrosis factor-alpha (TNF-alpha) and IL-6 by the liver differs after intraportal challenge with Candida albicans spp. vs. gram-negative or gram-positive bacteria, independent of microbial clearance kinetics or hepatic O2 consumption (VO2). Buffer-perfused rat livers were infected with equivalent inocula (10(9) colony-forming units) of viable Escherichia coli serotype 055:B5 (EC), exotoxin C-producing Staphylococcus aureus (SA), or two strains of yeast phase C. albicans (CA-1 and CA-2). Microbial clearance and circulating cytokine levels were assessed over 180 min while monitoring VO2 and functional parameters, after which organ-based microbial killing, cell-associated TNF-alpha, and cytokine mRNA levels were determined. Compared with saline controls (normal saline solution; NSS), circulating and cell-associated TNF-alpha and TNF-alpha transcripts minimally increased after CA. In contrast, large increases in perfusate TNF-alpha occurred after EC, peaking at 180 min [135 +/- 32 U/ml (mean + SE)], concomitant with rises in cell-associated cytokine and TNF-alpha transcripts (P < 0.01 vs. NSS). Circulating TNF-alpha also rose after SA but neither cell-associated nor mRNA levels exceeded NSS values. There were no pathogen-specific differences in microbial clearance or VO2. IL-6 gene expression paralleled that for TNF-alpha, but IL-6 bioactivity in perfusates was inhibited by TNF-alpha-dependent and -independent mechanisms. We conclude that hepatic TNF-alpha and IL-6 expression are differentially regulated after taxonomically diverse microbial challenges, with E. coli eliciting the strongest and Candida spp. the weakest stimulatory responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.